Good Things from Rocky Landings:

A Video Lander Study of a Nearshore Rocky Reef Area off the Oregon Coast

Gregory K. Krutzikówsky Marine Resources Program

Oregon Department of Fish and Wildlife greg.krutzikowsky@odfw.oregon.gov
"Counting fish is like counting trees - except they are invisible and keep moving." John Shepard, University of South Hampton

The original quote was:
"Managing fisheries is hard: it's like managing a forest, in which the trees are invisible and keep moving around"
(from an unpublished lecture at Princeton University, ca 1978)

Nearshore Video Lander Survey

Study Goals

- Examine potential for video lander survey to characterize fish community and habitat characteristics
- Examine potential of video lander survey to provide density and abundance information

So What Do the Data Look Like ? Visible fish that move!

Canonical Correspondence Analysis

177 Drops Made 145 Video Samples Analyzed

Depth (m)	Drops (\%)	Video (\%)	Reasons for no video analysis View =13, Vis = 4, Video = 15
<10	18 (10.2 \%)	12 (8.3 \%)	View - 1; Vis - 1; Video issue - 4
10 to <20	83 (46.9 \%)	67 (46.2 \%)	View - 8; Vis - 3; Video issue - 5
20 to <30	56 (31.6 \%)	47 (32.4 \%)	View - 3; Vis - 0; Video issue - 6
30 to <40	18 (10.1 \%)	17 (11.7 \%)	View - 1; Vis - 0; Video issue - 0
40 to <50	2 (1.1 \%)	2 (1.4 \%)	N/A

Substrate Info for 145 Drops

Substrates Encountered

From Moving Fish to Numbers

- Fish observed in 123 (85%) of drops
- 1370 of 1583 (87%) adult fish identified to species
- MaxN = Maximum \# visible in one frame
- Frequency of occurrence - \% of drops observed
- Area Viewed: $A=\left(\frac{\theta}{360}\right) \pi r^{2}$ for each drop
- Density $=\Sigma($ MaxN/A $) / n$ for all drops
- Abundance = Density * study area size

Species	\# drops	\% drops	Sum MaxN	Max. MaxN
Kelp Greenling	77	53.1%	123	12
Black Rockfish	70	48.3%	671	92
Lingcod	58	40.0%	78	4
Blue/Deacon Rockfish	48	33.1%	246	73
Pile Perch	31	21.4%	84	14
Canary Rockfish	25	17.2%	85	16
Striped Surf Perch	14	9.7%	49	15
Yellowtail Rockfish	8	5.5%	10	2
Copper Rockfish	7	4.8%	7	1
Cabezon	6	4.1%	6	1
Quillback Rockfish	5	3.4%	5	1
China Rockfish	2	1.4%	2	1
Tiger Rockfish	1	0.7%	1	1
Wolf Eel	1	0.7%	1	1
Yelloweye Rockfish	1	0.7%	1	1
Shiner Perch	1	0.7%	1	1
YoY UNID Rockfish	36	24.8%	184	32

Area Viewed: $\quad A=\left(\frac{\theta}{360}\right) \pi r^{2}$
$\theta=96.7^{\circ}$
Estimates for r from stereo lander work by Hannah and Blume 2016
Max $r=3.42 \mathrm{~m}$, Mean $r=2.42 \mathrm{~m}, \mathrm{Min} r=1.57 \mathrm{~m}$
$\operatorname{Max} A=9.87 \mathrm{~m}^{2}$, Mean $A=4.94 \mathrm{~m}^{2}, \mathrm{Min} A=2.08 \mathrm{~m}^{z}$

HOW CREVY \& M 18

Has anyone else tried this density thing or am I off into the wild blue yonder again?

Several published studies used similar methods to calculate fish densities from video landers.

- Burge et al. 2012 for grouper in the Atlantic
- Mallet et al. 2014 for coral reef fish in New Caledonia
- Pita et al. 2014 rocky reef fish off Spain
- Starr et al. 2016 rocky reef fish off California

Density and Abundance Estimates

| | mean
 density
 estimate
 $\left(\# / \mathbf{1 0 0} \mathbf{m}^{2}\right)$ | minimum
 density
 estimate
 $\left(\# / 100 \mathbf{m}^{2}\right)$ | mean
 abundance
 estimate | minimum
 abundance
 estimate |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Black Rockfish | 93.61 | 46.87 | $2,825,955$ | $1,414,959$ |
| Blue/Deacon Rockfish | 34.32 | 17.18 | $1,036,043$ | 518,748 |
| Kelp Greenling | 17.16 | 8.59 | 518,022 | 259,374 |
| Canary Rockfish | 11.86 | 5.94 | 357,982 | 179,242 |
| Pile Perch | 11.72 | 5.87 | 353,771 | 177,133 |
| Lingcod | 10.88 | 5.45 | 328,501 | 164,481 |
| Striped Surf Perch | 6.84 | 3.42 | 206,366 | 103,328 |
| Yellowtail Rockfish | 1.40 | 0.70 | 42,116 | 21,087 |
| Copper Rockfish | 0.98 | 0.49 | 29,481 | 14,761 |
| Cabezon | 0.84 | 0.42 | 25,269 | 12,652 |
| Quillback Rockfish | 0.70 | 0.35 | 21,058 | 10,544 |
| China Rockfish | 0.28 | 0.14 | 8,423 | 4,217 |

Any Estimates to Compare?

Black Rockfish PIT Tag Work

- Essentially same study area
- Based on Brownie model for markrecovery
- Abundance estimates informed 2007 and 2016 assessments
- PIT tag estimates 1.2 to 1.9 million
- Lander estimates 1.4 to 2.8 million

Future Work

- Fish Behavior Considerations
- Detectability Issues
- Metrics, Calculation Methods \& Processing Point Samples
- Full Incorporation of Stereo Cameras
- Expand spatial and temporal coverage

Thank You

