

Make a sediment core

Forams as Storytellers: Evaluate

What is a sediment core?

Explore the "What's a Core For?" Story Map!

Image: Oregon State University

Markers of big climate change

Global

 Volcanic eruptions - spew out ash that can spread out over the whole planet

What are eruptions you've heard of?

 Asteroids - when asteroids hit, they can disrupt the global climate

K-T boundary - mass extinction event after an asteroid hit. Killed the dinosaurs! Marked by a layer of Iridium (from the comet)

Mazama ash layer from the volcano that made Crater Lake. Image from a cave in Oregon. Credit: scenicoregon.com

Black layer is the Iridium marking the boundary, from a rock outcrop in Colorado. Credit: NSF

Markers of big climate change

Regional

Tsunamis

1700 - brought massive tsunami debris and sand and coarser material all over the Oregon coast

Dams

Columbia River dams

Do you think that would that increase or decrease sediment delivery?

Land use change

Logging - increase or decrease?

Tsunami 1

Tsunami 2

Tsunami 3

Tsunami debris layers in a sediment core from Japan. It causes an erasing of some material and a deposit of tan sand. Image credit: OSU.

Indicators of ocean temperature

- Foraminifera species foraminifera like to live in a specific temperature range. When it's too hot or too cold, they don't survive.
- A group of foraminifera species that live in a similar temperature range are grouped into bioprovinces.
 These bioprovinces follow lines of latitude.

Credit: Geosciences

Bioprovinces - Review from Day 1

Foraminifera Species Distributions with Temperature

Credit: Schmiedl, 2019

Estimating Accumulation of Sediment

Given the following formula, we can find the net annual accumulation of sediment:

Carbon Accumulation =
$$\frac{\text{(Carbon in grams)}}{\text{(Years)} \times \text{(Surface Area)}}$$

Example:

Carbon Accumulation =
$$\frac{(45\text{mg})}{(1.5 \text{ years}) \times (10 \text{ m}^2)} = \boxed{0.3 \text{ cm/yr}}$$

Estimating Years of Sediment Given a Core Sample

You can estimate the years of sediment in a core sample using the following equation:

$$Years = \frac{(Sample Depth)}{(Accumulation Rate)}$$

Example

Say you have a sample that is 30cm. Then you can find how many years are represented in the sample using the following method:

$$Years = \frac{(30 \ cm)}{(0.3cm/vear)} = \boxed{100 \ years}$$